Multiplier Groups of Planar Difference Sets and a Theorem of Kantor
نویسندگان
چکیده
A recent result of W. Kantor followed by a work of W. Feit has rekindled interest in the longstanding conjecture of finite cyclic planes. In this paper we prove that the order of the multiplier group equals the odd part of the order of the automorphism group of a Singer group if and only if the order of the plane is 2, 3, or 8. This yields another proof for Feit's result mentioned above.
منابع مشابه
Optimization of the Kinematic Sensitivity and the Greatest Continuous Circle in the Constant-orientation Workspace of Planar Parallel Mechanisms
This paper presents the results of a comprehensive study on the efficiency of planar parallel mechanisms, considering their kinetostatic performance and also, their workspace. This aim is approached upon proceeding single- and multi-objective optimization procedures. Kinetostatic performances of ten different planar parallel mechanisms are analyzed by resorting to a recent index, kinematic sens...
متن کاملStrong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces
In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.
متن کاملPLASTIC ANALYSIS OF PLANAR FRAMES USING CBO AND ECBO ALGORITHMS
In rigid plastic analysis one of the most widely applicable methods that is based on the minimum principle, is the combination of elementary mechanisms which uses the upper bound theorem. In this method a mechanism is searched which corresponds to the smallest load factor. Mathematical programming can be used to optimize this search process for simple fra...
متن کاملFunctionally closed sets and functionally convex sets in real Banach spaces
Let $X$ be a real normed space, then $C(subseteq X)$ is functionally convex (briefly, $F$-convex), if $T(C)subseteq Bbb R $ is convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$ is functionally closed (briefly, $F$-closed), if $T(K)subseteq Bbb R $ is closed for all bounded linear transformations $Tin B(X,R)$. We improve the Krein-Milman theorem ...
متن کاملOn non-Abelian group difference sets
This paper is motivated by R. H. Bruck’s paper[3], in which he proved that the existence of cyclic projective plane of order n ≡ 1 (mod 3) implies that of a non-planar difference set of the same order by proving that such a cyclic projective plane admits a regular non-Abelian automorphism group using n as a multiplier. In this paper we will discuss in detail the possibility of using multipliers...
متن کامل